Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Integr Zool ; 19(1): 52-65, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37899277

RESUMO

Rodents are important reservoirs for zoonotic pathogens that cause diseases in humans. Biodiversity is hypothesized to be closely related to pathogen prevalence through multiple direct and indirect pathways. For example, the presence of non-host species can reduce contact rates of the main reservoir host and thus reduce the risk of transmission ("dilution effect"). In addition, an overlap in ecological niches between two species could lead to increased interspecific competition, potentially limiting host densities and reducing density-dependent pathogen transmission processes. In this study, we investigated the relative impact of population-level regulation of direct and indirect drivers of the prevalence of Puumala orthohantavirus (PUUV) in bank voles (Clethrionomys glareolus) during years with high abundance. We compiled data on small mammal community composition from four regions in Germany between 2010 and 2013. Structural equation modeling revealed a strong seasonality in PUUV control mechanisms in bank voles. The abundance of shrews tended to have a negative relationship with host abundance, and host abundance positively influenced PUUV seroprevalence, while at the same time increasing the abundance of competing non-hosts like the wood mouse (Apodemus sylvaticus) and the yellow-necked field mouse (Apodemus flavicollis) were associated with reduced PUUV seroprevalence in the host. These results indicate that for PUUV in bank voles, dilution is associated with increased interspecific competition. Anthropogenic pressures leading to the decline of Apodemus spp. in a specific habitat could lead to the amplification of mechanisms promoting PUUV transmission within the host populations.


Assuntos
Febre Hemorrágica com Síndrome Renal , Virus Puumala , Humanos , Animais , Camundongos , Febre Hemorrágica com Síndrome Renal/epidemiologia , Estudos Soroepidemiológicos , Murinae , Arvicolinae , Dinâmica Populacional
2.
HNO ; 72(2): 90-101, 2024 Feb.
Artigo em Alemão | MEDLINE | ID: mdl-38117331

RESUMO

BACKGROUND: The impact of the COVID-19 pandemic on potential limitations to the diagnosis and treatment of patients with head and neck tumours has not yet been adequately investigated. There are contradictory data on this subject. Data from larger patient collectives do not exist for Germany so far. OBJECTIVE: The aim of the survey was to clarify in a large cohort whether the COVID-19 pandemic had an influence on the diagnosis and treatment of patients with head and neck tumours. METHODS: A retrospective data analysis of the reporting data of the Clinical and Epidemiological Cancer Registry of Brandenburg and Berlin (Klinisch-epidemiologischen Krebsregisters Brandenburg-Berlin, KKRBB) of 4831 cases with head and neck tumours from 2018 to 2020 was performed. The period before April 01, 2020, was evaluated as a prepandemic cohort and compared with the cases of the pandemic cohort from April 1, 2020, until December 31, 2020, in terms of patient-related baseline data, tumour location, tumour stage, tumour board and treatments administered. RESULTS: No differences were observed between the prepandemic and pandemic cohorts with regard to patient-related baseline data, tumour localisation and tumour stage. Likewise, no temporal delay in diagnosis, tumour board and treatment was evident during the pandemic period. On the contrary, the time interval between diagnosis and start of therapy was shortened by an average of 2.7 days in the pandemic phase. Tumours with T4 stage were more frequently treated surgically during the pandemic compared to the period before (20.8% vs. 29.6%), whereas primary radio(chemo)therapy decreased during the pandemic (53.3% vs. 40.4%). For all other tumour stages and entities, there were no differences in treatment. CONCLUSION: Contrary to initial speculation that the COVID-19 pandemic may have led to a decrease in tumour cases, larger tumour stages at initial presentation and a delay in diagnosis and treatment, the cohort studied for Brandenburg and Berlin showed neither a delay in tumour treatment nor an increase in tumour size and stage at initial presentation. The treatments performed, however, were subject to a change in favour of surgery and it remains to be seen whether this trend will be maintained in the long term.


Assuntos
COVID-19 , Neoplasias de Cabeça e Pescoço , Humanos , Pandemias , Estudos Retrospectivos , Berlim/epidemiologia , COVID-19/epidemiologia , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/epidemiologia , Neoplasias de Cabeça e Pescoço/terapia , Teste para COVID-19
3.
Biology (Basel) ; 11(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36552315

RESUMO

Trapping small mammals is frequently used to study the dynamics, demography, behavior and presence of pathogens. When only particular small mammal species are in the focus of interest, all other species are unnecessary bycatch. We analyzed data from extensive live trapping campaigns conducted over the last decade in Germany, following a consistent standard trapping protocol that resulted in about 18,500 captures of small mammals. Animals were trapped with Ugglan multiple capture traps in grassland, forest and margin habitat. Trap success and the proportion of bycatch were about 30% when target species were common voles (Microtus arvalis) in grassland and common voles and bank voles (Clethrionomys glareolus) in margins and forests. This was more pronounced in spring and along margins. Species mentioned in the early warning list according to the Red List Germany were higher in numbers and proportion in spring and in grassland. The results will help to avoid periods with enhanced presence of bycatch, including endangered species (if the purpose of the study allows) or to pay particular attention in certain seasons and habitats when the occurrence of bycatch is most likely.

4.
Viruses ; 13(6)2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208398

RESUMO

Tula orthohantavirus (TULV) is a rodent-borne hantavirus with broad geographical distribution in Europe. Its major reservoir is the common vole (Microtus arvalis), but TULV has also been detected in closely related vole species. Given the large distributional range and high amplitude population dynamics of common voles, this host-pathogen complex presents an ideal system to study the complex mechanisms of pathogen transmission in a wild rodent reservoir. We investigated the dynamics of TULV prevalence and the subsequent potential effects on the molecular evolution of TULV in common voles of the Central evolutionary lineage. Rodents were trapped for three years in four regions of Germany and samples were analyzed for the presence of TULV-reactive antibodies and TULV RNA with subsequent sequence determination. The results show that individual (sex) and population-level factors (abundance) of hosts were significant predictors of local TULV dynamics. At the large geographic scale, different phylogenetic TULV clades and an overall isolation-by-distance pattern in virus sequences were detected, while at the small scale (<4 km) this depended on the study area. In combination with an overall delayed density dependence, our results highlight that frequent, localized bottleneck events for the common vole and TULV do occur and can be offset by local recolonization dynamics.


Assuntos
Arvicolinae/virologia , Evolução Molecular , Orthohantavírus/genética , Doenças dos Roedores/virologia , Animais , Feminino , Alemanha/epidemiologia , Masculino , Doenças dos Roedores/epidemiologia , Estudos Soroepidemiológicos
5.
Viruses ; 13(7)2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203238

RESUMO

The development of new diagnostic methods resulted in the discovery of novel hepaciviruses in wild populations of the bank vole (Myodes glareolus, syn. Clethrionomys glareolus). The naturally infected voles demonstrate signs of hepatitis similar to those induced by hepatitis C virus (HCV) in humans. The aim of the present research was to investigate the geographical distribution of bank vole-associated hepaciviruses (BvHVs) and their genetic diversity in Europe. Real-time reverse transcription polymerase chain reaction (RT-qPCR) screening revealed BvHV RNA in 442 out of 1838 (24.0%) bank voles from nine European countries and in one of seven northern red-backed voles (Myodes rutilus, syn. Clethrionomys rutilus). BvHV RNA was not found in any other small mammal species (n = 23) tested here. Phylogenetic and isolation-by-distance analyses confirmed the occurrence of both BvHV species (Hepacivirus F and Hepacivirus J) and their sympatric occurrence at several trapping sites in two countries. The broad geographical distribution of BvHVs across Europe was associated with their presence in bank voles of different evolutionary lineages. The extensive geographical distribution and high levels of genetic diversity of BvHVs, as well as the high population fluctuations of bank voles and occasional commensalism in some parts of Europe warrant future studies on the zoonotic potential of BvHVs.


Assuntos
Arvicolinae/virologia , Variação Genética , Hepacivirus/genética , Hepatite C/epidemiologia , Hepatite C/veterinária , Animais , Animais Selvagens/virologia , Europa (Continente) , Feminino , Hepacivirus/classificação , Hepatite C/transmissão , Humanos , Masculino , Mamíferos/virologia , Filogenia , Roedores/virologia
6.
Nat Metab ; 3(5): 651-664, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33972798

RESUMO

Metabolism negotiates cell-endogenous requirements of energy, nutrients and building blocks with the immediate environment to enable various processes, including growth and differentiation. While there is an increasing number of examples of crosstalk between metabolism and chromatin, few involve uptake of exogenous metabolites. Solute carriers (SLCs) represent the largest group of transporters in the human genome and are responsible for the transport of a wide variety of substrates, including nutrients and metabolites. We aimed to investigate the possible involvement of SLC-mediated solutes uptake and cellular metabolism in regulating cellular epigenetic states. Here, we perform a CRISPR-Cas9 transporter-focused genetic screen and a metabolic compound library screen for the regulation of BRD4-dependent chromatin states in human myeloid leukaemia cells. Intersection of the two orthogonal approaches reveal that loss of transporters involved with purine transport or inhibition of de novo purine synthesis lead to dysfunction of BRD4-dependent transcriptional regulation. Through mechanistic characterization of the metabolic circuitry, we elucidate the convergence of SLC-mediated purine uptake and de novo purine synthesis on BRD4-chromatin occupancy. Moreover, adenine-related metabolite supplementation effectively restores BRD4 functionality on purine impairment. Our study highlights the specific role of purine/adenine metabolism in modulating BRD4-dependent epigenetic states.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas de Transporte de Nucleosídeos/metabolismo , Purinas/metabolismo , Proteínas Carreadoras de Solutos/metabolismo , Fatores de Transcrição/metabolismo , Adenina/metabolismo , Vias Biossintéticas , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular , Cromatina/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana Transportadoras , Modelos Biológicos , Proteínas Carreadoras de Solutos/genética , Fatores de Transcrição/antagonistas & inibidores , Transcrição Gênica
7.
Pathogens ; 9(7)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650456

RESUMO

The S segment of bank vole (Clethrionomys glareolus)-associated Puumala orthohantavirus (PUUV) contains two overlapping open reading frames coding for the nucleocapsid (N) and a non-structural (NSs) protein. To identify the influence of bank vole population dynamics on PUUV S segment sequence evolution and test for spillover infections in sympatric rodent species, during 2010-2014, 883 bank voles, 357 yellow-necked mice (Apodemus flavicollis), 62 wood mice (A. sylvaticus), 149 common voles (Microtus arvalis) and 8 field voles (M. agrestis) were collected in Baden-Wuerttemberg and North Rhine-Westphalia, Germany. In total, 27.9% and 22.3% of bank voles were positive for PUUV-reactive antibodies and PUUV-specific RNA, respectively. One of eight field voles was PUUV RNA-positive, indicating a spillover infection, but none of the other species showed evidence of PUUV infection. Phylogenetic and isolation-by-distance analyses demonstrated a spatial clustering of PUUV S segment sequences. In the hantavirus outbreak years 2010 and 2012, PUUV RNA prevalence was higher in our study regions compared to non-outbreak years 2011, 2013 and 2014. NSs amino acid and nucleotide sequence types showed temporal and/or local variation, whereas the N protein was highly conserved in the NSs overlapping region and, to a lower rate, in the N alone coding part.

9.
Immunity ; 51(6): 1074-1087.e9, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31784108

RESUMO

Infections induce complex host responses linked to antiviral defense, inflammation, and tissue damage and repair. We hypothesized that the liver, as a central metabolic hub, may orchestrate systemic metabolic changes during infection. We infected mice with chronic lymphocytic choriomeningitis virus (LCMV), performed RNA sequencing and proteomics of liver tissue, and integrated these data with serum metabolomics at different infection phases. Widespread reprogramming of liver metabolism occurred early after infection, correlating with type I interferon (IFN-I) responses. Viral infection induced metabolic alterations of the liver that depended on the interferon alpha/beta receptor (IFNAR1). Hepatocyte-intrinsic IFNAR1 repressed the transcription of metabolic genes, including Otc and Ass1, which encode urea cycle enzymes. This led to decreased arginine and increased ornithine concentrations in the circulation, resulting in suppressed virus-specific CD8+ T cell responses and ameliorated liver pathology. These findings establish IFN-I-induced modulation of hepatic metabolism and the urea cycle as an endogenous mechanism of immunoregulation. VIDEO ABSTRACT.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Interferon Tipo I/imunologia , Fígado/metabolismo , Vírus da Coriomeningite Linfocítica/imunologia , Receptor de Interferon alfa e beta/metabolismo , Animais , Arginina/sangue , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Feminino , Hepatócitos/metabolismo , Fígado/imunologia , Fígado/virologia , Coriomeningite Linfocítica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ornitina/sangue , Ornitina Carbamoiltransferase/genética , Transdução de Sinais/imunologia , Ureia/metabolismo , Células Vero
10.
Sci Rep ; 9(1): 2329, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787344

RESUMO

Zoonotic diseases are challenging to study from the ecological point of view as, broadly speaking, datasets tend to be either detailed on a small spatial extent, or coarse on a large spatial extent. Also, there are many ways to assess zoonotic disease transmission systems, from pathogens to hosts to humans. We explore the complementarity of datasets considering the pathogen in its host, the host and human cases in the context of Puumala orthohantavirus infection in Germany. We selected relevant environmental predictors using a conceptual framework based on resource-based habitats. This framework assesses the functions, and associated environmental resources of the pathogen and associated host. A resource-based habitat framework supports variable selection and result interpretation. Multiplying 'keyholes' to view a zoonotic disease transmission system is valuable, but requires a strong conceptual framework to select and interpret environmental explanatory variables. This study highlights the usefulness of a structured, ecology-based approach to study drivers of zoonotic diseases at the level of virus, host, and human - not only for PUUV but also for other zoonotic pathogens. Our results show that human disease cases are best explained by a combination of variables related to zoonotic pathogen circulation and human exposure.


Assuntos
Arvicolinae/virologia , Febre Hemorrágica com Síndrome Renal/epidemiologia , Febre Hemorrágica com Síndrome Renal/veterinária , Virus Puumala/fisiologia , Análise Espacial , Zoonoses/epidemiologia , Zoonoses/virologia , Animais , Ecossistema , Alemanha/epidemiologia , Febre Hemorrágica com Síndrome Renal/virologia , Humanos , Probabilidade
11.
Parasit Vectors ; 11(1): 213, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29587877

RESUMO

BACKGROUND: Giardiasis is an important gastrointestinal parasitic disease in humans and other mammals caused by the protozoan Giardia duodenalis. This species complex is represented by genetically distinct groups (assemblages A-H) with varying zoonotic potential and host preferences. Wild rodents can harbor potentially zoonotic assemblages A and B, and the rodent-specific assemblage G. Other Giardia spp. found in these animals are Giardia muris and Giardia microti. For the latter, only limited information on genetic typing is available. It has been speculated that wild rodents might represent an important reservoir for parasites causing human giardiasis. The aim of this study was to investigate the occurrence and distribution of Giardia spp. and assemblage types in wild rodents from different study sites in Germany. RESULTS: Screening of 577 wild rodents of the genera Apodemus, Microtus and Myodes, sampled at eleven study sites in Germany, revealed a high overall Giardia prevalence. Giardia species determination at the SSU rDNA gene locus revealed that Apodemus mice, depending on species, were predominantly infected with one of two distinct G. muris sequence types. Giardia microti was the predominant parasite species found in voles of the genera Microtus and Myodes. Only a few animals were positive for potentially zoonotic G. duodenalis. Subtyping at the beta-giardin (bg) and glutamine dehydrogenase (gdh) genes strongly supported the existence of different phylogenetic subgroups of G. microti that are preferentially harbored by distinct host species. CONCLUSIONS: The present study highlights the preference of G. muris for Apodemus, and G. microti for Microtus and Myodes hosts and argues for a very low prevalence of zoonotic G. duodenalis assemblages in wild rodents in Germany. It also provides evidence that G. muris and G. microti subdivide into several phylogenetically distinguishable subgroups, each of which appears to be preferentially harbored by species of a particular rodent host genus. Finally, the study expands the database of sequences relevant for sequence typing of G. muris and G. microti isolates which will greatly help future analyses of these parasites' population structure.


Assuntos
Arvicolinae/parasitologia , Giardia/classificação , Giardia/isolamento & purificação , Giardíase/veterinária , Murinae/parasitologia , Doenças dos Roedores/epidemiologia , Animais , Análise por Conglomerados , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genótipo , Alemanha/epidemiologia , Giardia/genética , Giardíase/parasitologia , Especificidade de Hospedeiro , Filogenia , Prevalência , RNA Ribossômico 18S/genética , Doenças dos Roedores/parasitologia , Análise de Sequência de DNA
12.
Vector Borne Zoonotic Dis ; 18(4): 188-199, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29470107

RESUMO

Leptospirosis is a worldwide emerging infectious disease caused by zoonotic bacteria of the genus Leptospira. Numerous mammals, including domestic and companion animals, can be infected by Leptospira spp., but rodents and other small mammals are considered the main reservoir. The annual number of recorded human leptospirosis cases in Germany (2001-2016) was 25-166. Field fever outbreaks in strawberry pickers, due to infection with Leptospira kirschneri serovar Grippotyphosa, were reported in 2007 and 2014. To identify the most commonly occurring Leptospira genomospecies, sequence types (STs), and their small mammal host specificity, a monitoring study was performed during 2010-2014 in four federal states of Germany. Initial screening of kidney tissues of 3,950 animals by PCR targeting the lipl32 gene revealed 435 rodents of 6 species and 89 shrews of three species positive for leptospiral DNA. PCR-based analyses resulted in the identification of the genomospecies L. kirschneri (62.7%), Leptospira interrogans (28.3%), and Leptospira borgpetersenii (9.0%), which are represented by four, one, and two STs, respectively. The average Leptospira prevalence was highest (∼30%) in common voles (Microtus arvalis) and field voles (Microtus agrestis). Both species were exclusively infected with L. kirschneri. In contrast, in bank voles (Myodes glareolus) and yellow-necked mice (Apodemus flavicollis), DNA of all three genomospecies was detected, and in common shrews (Sorex araneus) DNA of L. kirschneri and L. borgpetersenii was identified. The association between individual infection status and demographic factors varied between species; infection status was always positively correlated to body weight. In conclusion, the study confirmed a broad geographical distribution of Leptospira in small mammals and suggested an important public health relevance of common and field voles as reservoirs of L. kirschneri. Furthermore, the investigations identified seasonal, habitat-related, as well as individual influences on Leptospira prevalence in small mammals that might impact public health.


Assuntos
Leptospira/classificação , Leptospirose/veterinária , Roedores/microbiologia , Musaranhos/microbiologia , Animais , DNA Bacteriano/análise , Alemanha/epidemiologia , Rim/microbiologia , Leptospira/genética , Leptospirose/epidemiologia , Doenças dos Roedores/epidemiologia , Zoonoses
13.
Ticks Tick Borne Dis ; 9(3): 500-505, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29398604

RESUMO

Since the beginning of the 21st century, spotted fever rickettsioses are known as emerging diseases worldwide. Rickettsiae are obligately intracellular bacteria transmitted by arthropod vectors. The ecology of Rickettsia species has not been investigated in detail, but small mammals are considered to play a role as reservoirs. Aim of this study was to monitor rickettsiae in wild small mammals over a period of five years in four federal states of Germany. Initial screening of ear pinna tissues of 3939 animals by Pan-Rick real-time PCR targeting the citrate synthase (gltA) gene revealed 296 rodents of seven species and 19 shrews of two species positive for rickettsial DNA. Outer membrane protein gene (ompB, ompAIV) PCRs based typing resulted in the identification of three species: Rickettsia helvetica (90.9%) was found as the dominantly occurring species in the four investigated federal states, but Rickettsia felis (7.8%) and Rickettsia raoultii (1.3%) were also detected. The prevalence of Rickettsia spp. in rodents of the genus Apodemus was found to be higher (approximately 14%) than in all other rodent and shrew species at all investigated sites. General linear mixed model analyses indicated that heavier (older) individuals of yellow-necked mice and male common voles seem to contain more often rickettsial DNA than younger ones. Furthermore, rodents generally collected in forests in summer and autumn more often carried rickettsial DNA. In conclusion, this study indicated a high prevalence of R. helvetica in small mammal populations and suggests an age-dependent increase of the DNA prevalence in some of the species and in animals originating from forest habitats. The finding of R. helvetica and R. felis DNA in multiple small mammal species may indicate frequent trans-species transmission by feeding of vectors on different species. Further investigations should target the reason for the discrepancy between the high rickettsial DNA prevalence in rodents and the so far almost absence of clinical apparent human infections.


Assuntos
Animais Selvagens/microbiologia , Mamíferos/microbiologia , Infecções por Rickettsia/veterinária , Rickettsia/isolamento & purificação , Rickettsiose do Grupo da Febre Maculosa/veterinária , Fatores Etários , Animais , Arvicolinae/microbiologia , Citrato (si)-Sintase/genética , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Reservatórios de Doenças/microbiologia , Alemanha/epidemiologia , Humanos , Murinae/microbiologia , Prevalência , Reprodução , Rickettsia/genética , Infecções por Rickettsia/epidemiologia , Infecções por Rickettsia/microbiologia , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/microbiologia , Estações do Ano , Rickettsiose do Grupo da Febre Maculosa/epidemiologia , Rickettsiose do Grupo da Febre Maculosa/microbiologia
14.
Int J Med Microbiol ; 308(6): 590-597, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28967544

RESUMO

Laboratory mice are the most commonly used animal model for Staphylococcus aureus infection studies. We have previously shown that laboratory mice from global vendors are frequently colonized with S. aureus. Laboratory mice originate from wild house mice. Hence, we investigated whether wild rodents, including house mice, as well as shrews are naturally colonized with S. aureus and whether S. aureus adapts to the wild animal host. 295 animals of ten different species were caught in different locations over four years (2012-2015) in Germany, France and the Czech Republic. 45 animals were positive for S. aureus (15.3%). Three animals were co-colonized with two different isolates, resulting in 48 S. aureus isolates in total. Positive animals were found in Germany and the Czech Republic in each studied year. The S. aureus isolates belonged to ten different spa types, which grouped into six lineages (clonal complex (CC) 49, CC88, CC130, CC1956, sequence type (ST) 890, ST3033). CC49 isolates were most abundant (17/48, 35.4%), followed by CC1956 (14/48, 29.2%) and ST890 (9/48, 18.8%). The wild animal isolates lacked certain properties that are common among human isolates, e.g., a phage-encoded immune evasion cluster, superantigen genes on mobile genetic elements and antibiotic resistance genes, which suggests long-term adaptation to the wild animal host. One CC130 isolate contained the mecC gene, implying wild rodents might be both reservoir and vector for methicillin-resistant . In conclusion, we demonstrated that wild rodents and shrews are naturally colonized with S. aureus, and that those S. aureus isolates show signs of host adaptation.


Assuntos
Animais Selvagens/microbiologia , Roedores/microbiologia , Musaranhos/microbiologia , Infecções Estafilocócicas/epidemiologia , Staphylococcus aureus/isolamento & purificação , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , República Tcheca/epidemiologia , França/epidemiologia , Alemanha/epidemiologia , Staphylococcus aureus Resistente à Meticilina , Camundongos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/classificação , Fatores de Virulência/genética
15.
BMC Ecol ; 17(1): 9, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28245831

RESUMO

BACKGROUND: In Europe, bank voles (Myodes glareolus) are widely distributed and can transmit Puumala virus (PUUV) to humans, which causes a mild to moderate form of haemorrhagic fever with renal syndrome, called nephropathia epidemica. Uncovering the link between host and virus dynamics can help to prevent human PUUV infections in the future. Bank voles were live trapped three times a year in 2010-2013 in three woodland plots in each of four regions in Germany. Bank vole population density was estimated and blood samples collected to detect PUUV specific antibodies. RESULTS: We demonstrated that fluctuation of PUUV seroprevalence is dependent not only on multi-annual but also on seasonal dynamics of rodent host abundance. Moreover, PUUV infection might affect host fitness, because seropositive individuals survived better from spring to summer than uninfected bank voles. Individual space use was independent of PUUV infections. CONCLUSIONS: Our study provides robust estimations of relevant patterns and processes of the dynamics of PUUV and its rodent host in Central Europe, which are highly important for the future development of predictive models for human hantavirus infection risk.


Assuntos
Arvicolinae/virologia , Febre Hemorrágica com Síndrome Renal/veterinária , Virus Puumala/isolamento & purificação , Doenças dos Roedores/virologia , Animais , Anticorpos Antivirais/sangue , Arvicolinae/sangue , Europa (Continente) , Febre Hemorrágica com Síndrome Renal/sangue , Febre Hemorrágica com Síndrome Renal/virologia , Virus Puumala/genética , Virus Puumala/fisiologia , Doenças dos Roedores/sangue , Estações do Ano
16.
Pest Manag Sci ; 73(2): 332-340, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27233231

RESUMO

BACKGROUND: Several rodent species can damage forest trees, especially at young tree age in afforestation. Population outbreaks of field voles (Microtus agrestis L.) and bank voles (Myodes glareolus Schreber) in particular can cause losses. RESULTS: Analyses of long-term time series indicate good synchrony of population abundance in rodent species associated with damage in forestry. This synchrony could be related to the effect of beech (Fagus spec.) mast in the previous year on population growth rates of both species. In shorter time series from Eastern Germany, damage in forestry was mostly associated with autumn abundances of rodents. Environmental factors such as beech mast and snow cover did not explain additional variation in rodent damage to trees. CONCLUSIONS: Beech mast is a good indicator of long-term rodent abundance in Northern German afforestation areas. However, rodent damage to forestry in Central Germany did not seem to depend on environmental parameters other than rodent abundance at large scale. As a result, there is still uncertainty about the link between environmental predictors and rodent damage to forestry, and further experimental work is required to identify suitable environmental drivers and their interplay with other potential factors such as the local predator community. © 2016 Society of Chemical Industry.


Assuntos
Fagus , Roedores/fisiologia , Árvores , Animais , Agricultura Florestal , Alemanha , Dinâmica Populacional , Sementes
17.
PLoS One ; 10(7): e0134124, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26214509

RESUMO

The transmission of wildlife zoonoses to humans depends, amongst others, on complex interactions of host population ecology and pathogen dynamics within host populations. In Europe, the Puumala virus (PUUV) causes nephropathia epidemica in humans. In this study we investigated complex interrelations within the epidemic system of PUUV and its rodent host, the bank vole (Myodes glareolus). We suggest that beech fructification and bank vole abundance are both decisive factors affecting human PUUV infections. While rodent host dynamics are expected to be directly linked to human PUUV infections, beech fructification is a rather indirect predictor by serving as food source for PUUV rodent hosts. Furthermore, we examined the dependence of bank vole abundance on beech fructification. We analysed a 12-year (2001-2012) time series of the parameters: beech fructification (as food resource for the PUUV host), bank vole abundance and human incidences from 7 Federal States of Germany. For the first time, we could show the direct interrelation between these three parameters involved in human PUUV epidemics and we were able to demonstrate on a large scale that human PUUV infections are highly correlated with bank vole abundance in the present year, as well as beech fructification in the previous year. By using beech fructification and bank vole abundance as predictors in one model we significantly improved the degree of explanation of human PUUV incidence. Federal State was included as random factor because human PUUV incidence varies considerably among states. Surprisingly, the effect of rodent abundance on human PUUV infections is less strong compared to the indirect effect of beech fructification. Our findings are useful to facilitate the development of predictive models for host population dynamics and the related PUUV infection risk for humans and can be used for plant protection and human health protection purposes.


Assuntos
Arvicolinae/virologia , Fagus , Febre Hemorrágica com Síndrome Renal/epidemiologia , Febre Hemorrágica com Síndrome Renal/transmissão , Virus Puumala , Animais , Feminino , Alemanha/epidemiologia , Febre Hemorrágica com Síndrome Renal/prevenção & controle , Humanos , Incidência , Masculino
18.
Pest Manag Sci ; 71(2): 166-72, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24889216

RESUMO

BACKGROUND: Central European outbreak populations of the bank vole (Myodes glareolus Schreber) are known to cause damage in forestry and to transmit the most common type of Hantavirus (Puumala virus, PUUV) to humans. A sound estimation of potential effects of future climate scenarios on population dynamics is a prerequisite for long-term management strategies. Historic abundance time series were used to identify the key weather conditions associated with bank vole abundance, and were extrapolated to future climate scenarios to derive potential long-term changes in bank vole abundance dynamics. RESULTS: Classification and regression tree analysis revealed the most relevant weather parameters associated with high and low bank vole abundances. Summer temperatures 2 years prior to trapping had the highest impact on abundance fluctuation. Extrapolation of the identified parameters to future climate conditions revealed an increase in years with high vole abundance. CONCLUSION: Key weather patterns associated with vole abundance reflect the importance of superabundant food supply through masting to the occurrence of bank vole outbreaks. Owing to changing climate, these outbreaks are predicted potentially to increase in frequency 3-4-fold by the end of this century. This may negatively affect damage patterns in forestry and the risk of human PUUV infection in the long term.


Assuntos
Arvicolinae/fisiologia , Mudança Climática , Animais , Alemanha , Controle de Pragas , Dinâmica Populacional , Estações do Ano , Temperatura , Tempo (Meteorologia)
19.
Emerg Infect Dis ; 18(9): 1461-4, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22932394

RESUMO

To investigate 2,017 cases of hantavirus disease in Germany, we compared 38 new patient-derived Puumala virus RNA sequences identified in 2010 with bank vole-derived small segment RNA sequences. The epidemic process was driven by outbreaks of 6 Puumala virus clades comprising strains of human and vole origin. Each clade corresponded to a different outbreak region.


Assuntos
Surtos de Doenças , Febre Hemorrágica com Síndrome Renal/epidemiologia , Virus Puumala/genética , Alemanha/epidemiologia , Humanos , Filogenia , Virus Puumala/classificação , RNA Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...